**Author**: James J. Callahan

**Publisher:** Springer Science & Business Media

**ISBN:** 9781475767360

**Category:** Science

**Page:** 454

**View:** 123

Skip to content
## The Geometry of Spacetime

Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.
## The Geometry of Spacetime

Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.
## Spacetime and Geometry

Spacetime and Geometry is an introductory textbook on general relativity, specifically aimed at students. Using a lucid style, Carroll first covers the foundations of the theory and mathematical formalism, providing an approachable introduction to what can often be an intimidating subject. Three major applications of general relativity are then discussed: black holes, perturbation theory and gravitational waves, and cosmology. Students will learn the origin of how spacetime curves (the Einstein equation) and how matter moves through it (the geodesic equation). They will learn what black holes really are, how gravitational waves are generated and detected, and the modern view of the expansion of the universe. A brief introduction to quantum field theory in curved spacetime is also included. A student familiar with this book will be ready to tackle research-level problems in gravitational physics.
## Geometric Flows and the Geometry of Space-time

This book consists of two lecture notes on geometric flow equations (O. Schnürer) and Lorentzian geometry - holonomy, spinors and Cauchy Problems (H. Baum and T. Leistner) written by leading experts in these fields. It grew out of the summer school “Geometric flows and the geometry of space-time” held in Hamburg (2016) and provides an excellent introduction for students of mathematics and theoretical physics to important themes of current research in global analysis, differential geometry and mathematical physics
## Quantum Mechanics in the Geometry of Space-Time

This book continues the fundamental work of Arnold Sommerfeld and David Hestenes formulating theoretical physics in terms of Minkowski space-time geometry. We see how the standard matrix version of the Dirac equation can be reformulated in terms of a real space-time algebra, thus revealing a geometric meaning for the “number i” in quantum mechanics. Next, it is examined in some detail how electroweak theory can be integrated into the Dirac theory and this way interpreted in terms of space-time geometry. Finally, some implications for quantum electrodynamics are considered. The presentation of real quantum electromagnetism is expressed in an addendum. The book covers both the use of the complex and the real languages and allows the reader acquainted with the first language to make a step by step translation to the second one.
## Spacetime, Geometry and Gravitation

This introductory textbook on the general theory of relativity presents a solid foundation for those who want to learn about relativity. The subject is presented in a physically intuitive, but mathematically rigorous style. The topic of relativity is covered in a broad and deep manner. Besides, the aim is that after reading the book a student should not feel discouraged when she opens advanced texts on general relativity for further reading. The book consists of three parts: An introduction to the general theory of relativity. Geometrical mathematical background material. Topics that include the action principle, weak gravitational fields and gravitational waves, Schwarzschild and Kerr solution, and the Friedman equation in cosmology. The book is suitable for advanced graduates and graduates, but also for established researchers wishing to be educated about the field.
## The Geometry of Minkowski Spacetime

This mathematically rigorous treatment examines Zeeman's characterization of the causal automorphisms of Minkowski spacetime and the Penrose theorem concerning the apparent shape of a relativistically moving sphere. Other topics include the construction of a geometric theory of the electromagnetic field; an in-depth introduction to the theory of spinors; and a classification of electromagnetic fields in both tensor and spinor form. Appendixes introduce a topology for Minkowski spacetime and discuss Dirac's famous "Scissors Problem." Appropriate for graduate-level courses, this text presumes only a knowledge of linear algebra and elementary point-set topology. 1992 edition. 43 figures.
## Spacetime

One of the most of exciting aspects is the general relativity pred- tion of black holes and the Such Big Bang. predictions gained weight the theorems through Penrose. singularity pioneered In various by te- books on theorems general relativity singularity are and then presented used to that black holes exist and that the argue universe started with a To date what has big been is bang. a critical of what lacking analysis these theorems predict-’ We of really give a proof a typical singul- theorem and this ity use theorem to illustrate problems arising through the of possibilities violations" and "causality weak "shell very crossing These singularities". add to the problems weight of view that the point theorems alone singularity are not sufficient to the existence of predict physical singularities. The mathematical theme of the book In order to both solid gain a of and intuition understanding good for any mathematical theory, one,should to realise it as model of try a a fam- iar non-mathematical theories have had concept. Physical an especially the important on of and impact development mathematics, conversely various modern theories physical rather require sophisticated mathem- ics for their formulation. both and mathematics Today, physics are so that it is often difficult complex to master the theories in both very s- in the of jects. However, case differential pseudo-Riemannian geometry or the general relativity between and mathematics relationship physics is and it is therefore especially close, to from interd- possible profit an ciplinary approach.
## Geometry of Minkowski Space-Time

This book provides an original introduction to the geometry of Minkowski space-time. A hundred years after the space-time formulation of special relativity by Hermann Minkowski, it is shown that the kinematical consequences of special relativity are merely a manifestation of space-time geometry. The book is written with the intention of providing students (and teachers) of the first years of University courses with a tool which is easy to be applied and allows the solution of any problem of relativistic kinematics at the same time. The book treats in a rigorous way, but using a non-sophisticated mathematics, the Kinematics of Special Relativity. As an example, the famous "Twin Paradox" is completely solved for all kinds of motions. The novelty of the presentation in this book consists in the extensive use of hyperbolic numbers, the simplest extension of complex numbers, for a complete formalization of the kinematics in the Minkowski space-time. Moreover, from this formalization the understanding of gravity comes as a manifestation of curvature of space-time, suggesting new research fields.
## The Geometry of Minkowski Spacetime

This book offers a presentation of the special theory of relativity that is mathematically rigorous and yet spells out in considerable detail the physical significance of the mathematics. It treats, in addition to the usual menu of topics one is accustomed to finding in introductions to special relativity, a wide variety of results of more contemporary origin. These include Zeeman’s characterization of the causal automorphisms of Minkowski spacetime, the Penrose theorem on the apparent shape of a relativistically moving sphere, a detailed introduction to the theory of spinors, a Petrov-type classification of electromagnetic fields in both tensor and spinor form, a topology for Minkowski spacetime whose homeomorphism group is essentially the Lorentz group, and a careful discussion of Dirac’s famous Scissors Problem and its relation to the notion of a two-valued representation of the Lorentz group. This second edition includes a new chapter on the de Sitter universe which is intended to serve two purposes. The first is to provide a gentle prologue to the steps one must take to move beyond special relativity and adapt to the presence of gravitational fields that cannot be considered negligible. The second is to understand some of the basic features of a model of the empty universe that differs markedly from Minkowski spacetime, but may be recommended by recent astronomical observations suggesting that the expansion of our own universe is accelerating rather than slowing down. The treatment presumes only a knowledge of linear algebra in the first three chapters, a bit of real analysis in the fourth and, in two appendices, some elementary point-set topology. The first edition of the book received the 1993 CHOICE award for Outstanding Academic Title. Reviews of first edition: “... a valuable contribution to the pedagogical literature which will be enjoyed by all who delight in precise mathematics and physics.” (American Mathematical Society, 1993) “Where many physics texts explain physical phenomena by means of mathematical models, here a rigorous and detailed mathematical development is accompanied by precise physical interpretations.” (CHOICE, 1993) “... his talent in choosing the most significant results and ordering them within the book can’t be denied. The reading of the book is, really, a pleasure.” (Dutch Mathematical Society, 1993)
## Orthogonality and Spacetime Geometry

This book examines the geometrical notion of orthogonality, and shows how to use it as the primitive concept on which to base a metric structure in affine geometry. The subject has a long history, and an extensive literature, but whatever novelty there may be in the study presented here comes from its focus on geometries hav ing lines that are self-orthogonal, or even singular (orthogonal to all lines). The most significant examples concern four-dimensional special-relativistic spacetime (Minkowskian geometry), and its var ious sub-geometries, and these will be prominent throughout. But the project is intended as an exercise in the foundations of geome try that does not presume a knowledge of physics, and so, in order to provide the appropriate intuitive background, an initial chapter has been included that gives a description of the different types of line (timelike, spacelike, lightlike) that occur in spacetime, and the physical meaning of the orthogonality relations that hold between them. The coordinatisation of affine spaces makes use of constructions from projective geometry, including standard results about the ma trix represent ability of certain projective transformations (involu tions, polarities). I have tried to make the work sufficiently self contained that it may be used as the basis for a course at the ad vanced undergraduate level, assuming only an elementary knowledge of linear and abstract algebra.
## The Geometry of Special Relativity

This unique book presents a particularly beautiful way of looking at special relativity. The author encourages students to see beyond the formulas to the deeper structure. The unification of space and time introduced by Einstein’s special theory of relativity is one of the cornerstones of the modern scientific description of the universe. Yet the unification is counterintuitive because we perceive time very differently from space. Even in relativity, time is not just another dimension, it is one with different properties The book treats the geometry of hyperbolas as the key to understanding special relativity. The author simplifies the formulas and emphasizes their geometric content. Many important relations, including the famous relativistic addition formula for velocities, then follow directly from the appropriate (hyperbolic) trigonometric addition formulas. Prior mastery of (ordinary) trigonometry is sufficient for most of the material presented, although occasional use is made of elementary differential calculus, and the chapter on electromagnetism assumes some more advanced knowledge. Changes to the Second Edition The treatment of Minkowski space and spacetime diagrams has been expanded. Several new topics have been added, including a geometric derivation of Lorentz transformations, a discussion of three-dimensional spacetime diagrams, and a brief geometric description of "area" and how it can be used to measure time and distance. Minor notational changes were made to avoid conflict with existing usage in the literature. Table of Contents Preface 1. Introduction. 2. The Physics of Special Relativity. 3. Circle Geometry. 4. Hyperbola Geometry. 5. The Geometry of Special Relativity. 6. Applications. 7. Problems III. 8. Paradoxes. 9. Relativistic Mechanics. 10. Problems II. 11. Relativistic Electromagnetism. 12. Problems III. 13. Beyond Special Relativity. 14. Three-Dimensional Spacetime Diagrams. 15. Minkowski Area via Light Boxes. 16. Hyperbolic Geometry. 17. Calculus. Bibliography. Author Biography Tevian Dray is a Professor of Mathematics at Oregon State University. His research lies at the interface between mathematics and physics, involving differential geometry and general relativity, as well as nonassociative algebra and particle physics; he also studies student understanding of "middle-division" mathematics and physics content. Educated at MIT and Berkeley, he held postdoctoral positions in both mathematics and physics in several countries prior to coming to OSU in 1988. Professor Dray is a Fellow of the American Physical Society for his work in relativity, and an award-winning teacher.