Search Results for: The Geometry Of Spacetime

The Geometry of Spacetime

The Geometry of Spacetime

Author: James J. Callahan

Publisher: Springer Science & Business Media

ISBN: 9781475767360

Category: Science

Page: 454

View: 543

Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.

The Geometry of Spacetime

The Geometry of Spacetime

Author: James J. Callahan

Publisher: Springer Science & Business Media

ISBN: 0387986413

Category: Computers

Page: 474

View: 718

Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.

Geometric Flows and the Geometry of Space-time

Geometric Flows and the Geometry of Space-time

Author: Vicente Cortés

Publisher: Springer

ISBN: 9783030011260

Category: Mathematics

Page: 121

View: 360

This book consists of two lecture notes on geometric flow equations (O. Schnürer) and Lorentzian geometry - holonomy, spinors and Cauchy Problems (H. Baum and T. Leistner) written by leading experts in these fields. It grew out of the summer school “Geometric flows and the geometry of space-time” held in Hamburg (2016) and provides an excellent introduction for students of mathematics and theoretical physics to important themes of current research in global analysis, differential geometry and mathematical physics

Quantum Mechanics in the Geometry of Space-Time

Quantum Mechanics in the Geometry of Space-Time

Author: Roger Boudet

Publisher: Springer Science & Business Media

ISBN: 3642191991

Category: Science

Page: 119

View: 391

This book continues the fundamental work of Arnold Sommerfeld and David Hestenes formulating theoretical physics in terms of Minkowski space-time geometry. We see how the standard matrix version of the Dirac equation can be reformulated in terms of a real space-time algebra, thus revealing a geometric meaning for the “number i” in quantum mechanics. Next, it is examined in some detail how electroweak theory can be integrated into the Dirac theory and this way interpreted in terms of space-time geometry. Finally, some implications for quantum electrodynamics are considered. The presentation of real quantum electromagnetism is expressed in an addendum. The book covers both the use of the complex and the real languages and allows the reader acquainted with the first language to make a step by step translation to the second one.

Spacetime

Spacetime

Author: Marcus Kriele

Publisher: Springer Science & Business Media

ISBN: 9783540663775

Category: Mathematics

Page: 444

View: 223

This textbook is for mathematicians and mathematical physicists and is mainly concerned with the physical justification of both the mathematical framework and the foundations of the theory of general relativity. Previous knowledge of the relevant physics is not assumed. This book is also suitable as an introduction to pseudo-Riemannian geometry with emphasis on geometrical concepts. A significant part of the text is devoted to the discussion of causality and singularity theorems. The insights obtained are applied to black hole astrophysics, thereby making the connection to current active research in mathematical physics and cosmology.

Geometry of Minkowski Space-Time

Geometry of Minkowski Space-Time

Author: Francesco Catoni

Publisher: Springer Science & Business Media

ISBN: 9783642179778

Category: Science

Page: 116

View: 472

This book provides an original introduction to the geometry of Minkowski space-time. A hundred years after the space-time formulation of special relativity by Hermann Minkowski, it is shown that the kinematical consequences of special relativity are merely a manifestation of space-time geometry. The book is written with the intention of providing students (and teachers) of the first years of University courses with a tool which is easy to be applied and allows the solution of any problem of relativistic kinematics at the same time. The book treats in a rigorous way, but using a non-sophisticated mathematics, the Kinematics of Special Relativity. As an example, the famous "Twin Paradox" is completely solved for all kinds of motions. The novelty of the presentation in this book consists in the extensive use of hyperbolic numbers, the simplest extension of complex numbers, for a complete formalization of the kinematics in the Minkowski space-time. Moreover, from this formalization the understanding of gravity comes as a manifestation of curvature of space-time, suggesting new research fields.

Geometric Flows and the Geometry of Space-time

Geometric Flows and the Geometry of Space-time

Author: Vicente Cortés

Publisher: Birkhäuser

ISBN: 3030011259

Category: Mathematics

Page: 121

View: 607

This book consists of two lecture notes on geometric flow equations (O. Schnürer) and Lorentzian geometry - holonomy, spinors and Cauchy Problems (H. Baum and T. Leistner) written by leading experts in these fields. It grew out of the summer school “Geometric flows and the geometry of space-time” held in Hamburg (2016) and provides an excellent introduction for students of mathematics and theoretical physics to important themes of current research in global analysis, differential geometry and mathematical physics

Spacetime, Geometry and Gravitation

Spacetime, Geometry and Gravitation

Author: Pankaj Sharan

Publisher: Springer Science & Business Media

ISBN: 9783764399702

Category: Mathematics

Page: 357

View: 638

This introductory textbook on the general theory of relativity presents a solid foundation for those who want to learn about relativity. The subject is presented in a physically intuitive, but mathematically rigorous style. The topic of relativity is covered in a broad and deep manner. Besides, the aim is that after reading the book a student should not feel discouraged when she opens advanced texts on general relativity for further reading. The book consists of three parts: An introduction to the general theory of relativity. Geometrical mathematical background material. Topics that include the action principle, weak gravitational fields and gravitational waves, Schwarzschild and Kerr solution, and the Friedman equation in cosmology. The book is suitable for advanced graduates and graduates, but also for established researchers wishing to be educated about the field.

The Geometry of Minkowski Spacetime

The Geometry of Minkowski Spacetime

Author: Gregory L. Naber

Publisher: Courier Corporation

ISBN: 0486432351

Category: Mathematics

Page: 276

View: 651

This mathematically rigorous treatment examines Zeeman's characterization of the causal automorphisms of Minkowski spacetime and the Penrose theorem concerning the apparent shape of a relativistically moving sphere. Other topics include the construction of a geometric theory of the electromagnetic field; an in-depth introduction to the theory of spinors; and a classification of electromagnetic fields in both tensor and spinor form. Appendixes introduce a topology for Minkowski spacetime and discuss Dirac's famous "Scissors Problem." Appropriate for graduate-level courses, this text presumes only a knowledge of linear algebra and elementary point-set topology. 1992 edition. 43 figures.

The Geometry of Minkowski Spacetime

The Geometry of Minkowski Spacetime

Author: Gregory L. Naber

Publisher: Springer Science & Business Media

ISBN: 9781441978387

Category: Mathematics

Page: 324

View: 997

This book offers a presentation of the special theory of relativity that is mathematically rigorous and yet spells out in considerable detail the physical significance of the mathematics. It treats, in addition to the usual menu of topics one is accustomed to finding in introductions to special relativity, a wide variety of results of more contemporary origin. These include Zeeman’s characterization of the causal automorphisms of Minkowski spacetime, the Penrose theorem on the apparent shape of a relativistically moving sphere, a detailed introduction to the theory of spinors, a Petrov-type classification of electromagnetic fields in both tensor and spinor form, a topology for Minkowski spacetime whose homeomorphism group is essentially the Lorentz group, and a careful discussion of Dirac’s famous Scissors Problem and its relation to the notion of a two-valued representation of the Lorentz group. This second edition includes a new chapter on the de Sitter universe which is intended to serve two purposes. The first is to provide a gentle prologue to the steps one must take to move beyond special relativity and adapt to the presence of gravitational fields that cannot be considered negligible. The second is to understand some of the basic features of a model of the empty universe that differs markedly from Minkowski spacetime, but may be recommended by recent astronomical observations suggesting that the expansion of our own universe is accelerating rather than slowing down. The treatment presumes only a knowledge of linear algebra in the first three chapters, a bit of real analysis in the fourth and, in two appendices, some elementary point-set topology. The first edition of the book received the 1993 CHOICE award for Outstanding Academic Title. Reviews of first edition: “... a valuable contribution to the pedagogical literature which will be enjoyed by all who delight in precise mathematics and physics.” (American Mathematical Society, 1993) “Where many physics texts explain physical phenomena by means of mathematical models, here a rigorous and detailed mathematical development is accompanied by precise physical interpretations.” (CHOICE, 1993) “... his talent in choosing the most significant results and ordering them within the book can’t be denied. The reading of the book is, really, a pleasure.” (Dutch Mathematical Society, 1993)

Gravitation

Gravitation

Author: Charles W. Misner

Publisher: Princeton University Press

ISBN: 9780691177793

Category: Science

Page: 1332

View: 124

Spacetime physics -- Physics in flat spacetime -- The mathematics of curved spacetime -- Einstein's geometric theory of gravity -- Relativistic stars -- The universe -- Gravitational collapse and black holes -- Gravitational waves -- Experimental tests of general relativity -- Frontiers