Search Results for: Physics Based Deformable Models

Physics-Based Deformable Models

Physics-Based Deformable Models

Author: Dimitris N. Metaxas

Publisher: Springer Science & Business Media

ISBN: 9781461563358

Category: Science

Page: 308

View: 813

Physics-Based Deformable Models presents a systematic physics-based framework for modeling rigid, articulated, and deformable objects, their interactions with the physical world, and the estimate of their shape and motion from visual data. This book presents a large variety of methods and associated experiments in computer vision, graphics and medical imaging that help the reader better to understand the presented material. In addition, special emphasis has been given to the development of techniques with interactive or close to real-time performance. Physics-Based Deformable Models is suitable as a secondary text for graduate level courses in Computer Graphics, Computational Physics, Computer Vision, Medical Imaging, and Biomedical Engineering. In addition, this book is appropriate as a reference for researchers and practitioners in the above-mentioned fields.

Physics-Based Deformable Models

Physics-Based Deformable Models

Author: Dimitris N. Metaxas

Publisher: Springer

ISBN: 1461379091

Category: Science

Page: 308

View: 851

Physics-Based Deformable Models presents a systematic physics-based framework for modeling rigid, articulated, and deformable objects, their interactions with the physical world, and the estimate of their shape and motion from visual data. This book presents a large variety of methods and associated experiments in computer vision, graphics and medical imaging that help the reader better to understand the presented material. In addition, special emphasis has been given to the development of techniques with interactive or close to real-time performance. Physics-Based Deformable Models is suitable as a secondary text for graduate level courses in Computer Graphics, Computational Physics, Computer Vision, Medical Imaging, and Biomedical Engineering. In addition, this book is appropriate as a reference for researchers and practitioners in the above-mentioned fields.

Physics-Based Probabilistic Motion Compensation of Elastically Deformable Objects

Physics-Based Probabilistic Motion Compensation of Elastically Deformable Objects

Author: Evgeniya Ballmann

Publisher: KIT Scientific Publishing

ISBN: 9783866448629

Category: Electronic computers. Computer science

Page: 244

View: 425

A predictive tracking approach and a novel method for visual motion compensation are introduced, which accurately reconstruct and compensate the deformation of the elastic object, even in the case of complete measurement information loss. The core of the methods involves a probabilistic physical model of the object, from which all other mathematical models are systematically derived. Due to flexible adaptation of the models, the balance between their complexity and their accuracy is achieved.

Deformable Models

Deformable Models

Author: Aly Farag

Publisher: Springer Science & Business Media

ISBN: 9780387684130

Category: Medical

Page: 556

View: 448

This book covers the complete spectrum of deformable models, its evolution as an imagery field and its use in many biomedical engineering and clinical application disciplines. It includes level sets, PDEs, curve and surface evolution and their applications in biomedical fields covering both static and motion imagery.

Computer Vision - ECCV 2000

Computer Vision - ECCV 2000

Author: David Vernon

Publisher: Springer Science & Business Media

ISBN: 9783540676867

Category: Computers

Page: 881

View: 568

The two-volume set LNCS 1842/1843 constitutes the refereed proceedings of the 6th European Conference on Computer Vision, ECCV 2000, held in Dublin, Ireland in June/July 2000. The 116 revised full papers presented were carefully selected from a total of 266 submissions. The two volumes offer topical sections on recognitions and modelling; stereoscopic vision; texture and shading; shape; structure from motion; image features; active, real-time, and robot vision; segmentation and grouping; vision systems engineering and evaluation; calibration; medical image understanding; and visual motion.

Advanced Algorithmic Approaches to Medical Image Segmentation

Advanced Algorithmic Approaches to Medical Image Segmentation

Author: S. Kamaledin Setarehdan

Publisher: Springer Science & Business Media

ISBN: 9780857293336

Category: Computers

Page: 636

View: 611

Medical imaging is an important topic and plays a key role in robust diagnosis and patient care. It has experienced an explosive growth over the last few years due to imaging modalities such as X-rays, computed tomography (CT), magnetic resonance (MR) imaging, and ultrasound. This book focuses primarily on model-based segmentation techniques, which are applied to cardiac, brain, breast and microscopic cancer cell imaging. It includes contributions from authors working in industry and academia, and presents new material.

Articulated Motion and Deformable Objects

Articulated Motion and Deformable Objects

Author: Francisco J. Perales

Publisher: Springer

ISBN: 9783540361381

Category: Computers

Page: 262

View: 375

This book constitutes the refereed proceedings of the Second International Workshop on Articulated Motion and Deformable Objects, AMDO 2002, held in Palma de Mallorca, Spain in November 2002.The 21 revised full papers presented were carefully reviewed and selected for inclusion in the book. Among the topics addressed are geometric and physical deformable objects, motion analysis, articulated models and animation, visualization of deformable models, 3D recovery from motion, single or multiple human motion analysis and synthesis, applications of deformable models and motion analysis, face tracking, recovery and recognition models.

Geometric Level Set Methods in Imaging, Vision, and Graphics

Geometric Level Set Methods in Imaging, Vision, and Graphics

Author: Stanley Osher

Publisher: Springer Science & Business Media

ISBN: 9780387218106

Category: Computers

Page: 513

View: 362

Here is, for the first time, a book that clearly explains and applies new level set methods to problems and applications in computer vision, graphics, and imaging. It is an essential compilation of survey chapters from the leading researchers in the field. The applications of the methods are emphasized.

Handbook of Medical Image Computing and Computer Assisted Intervention

Handbook of Medical Image Computing and Computer Assisted Intervention

Author: Kevin Zhou

Publisher: Academic Press

ISBN: 9780128165867

Category: Computers

Page: 1074

View: 460

Handbook of Medical Image Computing and Computer Assisted Intervention presents important advanced methods and state-of-the art research in medical image computing and computer assisted intervention, providing a comprehensive reference on current technical approaches and solutions, while also offering proven algorithms for a variety of essential medical imaging applications. This book is written primarily for university researchers, graduate students and professional practitioners (assuming an elementary level of linear algebra, probability and statistics, and signal processing) working on medical image computing and computer assisted intervention. Presents the key research challenges in medical image computing and computer-assisted intervention Written by leading authorities of the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society Contains state-of-the-art technical approaches to key challenges Demonstrates proven algorithms for a whole range of essential medical imaging applications Includes source codes for use in a plug-and-play manner Embraces future directions in the fields of medical image computing and computer-assisted intervention

Graphical Simulation of Deformable Models

Graphical Simulation of Deformable Models

Author: Jianping Cai

Publisher: Springer

ISBN: 9783319510316

Category: Computers

Page: 107

View: 166

This book covers dynamic simulation of deformable objects, which is one of the most challenging tasks in computer graphics and visualization. It focuses on the simulation of deformable models with anisotropic materials, one of the less common approaches in the existing research. Both physically-based and geometrically-based approaches are examined. The authors start with transversely isotropic materials for the simulation of deformable objects with fibrous structures. Next, they introduce a fiber-field incorporated corotational finite element model (CLFEM) that works directly with a constitutive model of transversely isotropic material. A smooth fiber-field is used to establish the local frames for each element. To introduce deformation simulation for orthotropic materials, an orthotropic deformation controlling frame-field is conceptualized and a frame construction tool is developed for users to define the desired material properties. The orthotropic frame-field is coupled with the CLFEM model to complete an orthotropic deformable model. Finally, the authors present an integrated real-time system for animation of skeletal characters with anisotropic tissues. To solve the problems of volume distortion and high computational costs, a strain-based PBD framework for skeletal animation is explained; natural secondary motion of soft tissues is another benefit. The book is written for those researchers who would like to develop their own algorithms. The key mathematical and computational concepts are presented together with illustrations and working examples. It can also be used as a reference book for graduate students and senior undergraduates in the areas of computer graphics, computer animation, and virtual reality. Academics, researchers, and professionals will find this to be an exceptional resource.

Deformation Models

Deformation Models

Author: Manuel González Hidalgo

Publisher: Springer Science & Business Media

ISBN: 9789400754461

Category: Computers

Page: 297

View: 755

The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications. The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, such as those related with Computer Graphics, Computer Vision, Computer Imaging, Biomedicine, Bioengineering, Mathematics, Physics, Medical Imaging and Medicine.

Handbook of Medical Image Processing and Analysis

Handbook of Medical Image Processing and Analysis

Author: Isaac Bankman

Publisher: Elsevier

ISBN: 008055914X

Category: Computers

Page: 1000

View: 732

The Handbook of Medical Image Processing and Analysis is a comprehensive compilation of concepts and techniques used for processing and analyzing medical images after they have been generated or digitized. The Handbook is organized into six sections that relate to the main functions: enhancement, segmentation, quantification, registration, visualization, and compression, storage and communication. The second edition is extensively revised and updated throughout, reflecting new technology and research, and includes new chapters on: higher order statistics for tissue segmentation; tumor growth modeling in oncological image analysis; analysis of cell nuclear features in fluorescence microscopy images; imaging and communication in medical and public health informatics; and dynamic mammogram retrieval from web-based image libraries. For those looking to explore advanced concepts and access essential information, this second edition of Handbook of Medical Image Processing and Analysis is an invaluable resource. It remains the most complete single volume reference for biomedical engineers, researchers, professionals and those working in medical imaging and medical image processing. Dr. Isaac N. Bankman is the supervisor of a group that specializes on imaging, laser and sensor systems, modeling, algorithms and testing at the Johns Hopkins University Applied Physics Laboratory. He received his BSc degree in Electrical Engineering from Bogazici University, Turkey, in 1977, the MSc degree in Electronics from University of Wales, Britain, in 1979, and a PhD in Biomedical Engineering from the Israel Institute of Technology, Israel, in 1985. He is a member of SPIE. Includes contributions from internationally renowned authors from leading institutions NEW! 35 of 56 chapters have been revised and updated. Additionally, five new chapters have been added on important topics incluling Nonlinear 3D Boundary Detection, Adaptive Algorithms for Cancer Cytological Diagnosis, Dynamic Mammogram Retrieval from Web-Based Image Libraries, Imaging and Communication in Health Informatics and Tumor Growth Modeling in Oncological Image Analysis. Provides a complete collection of algorithms in computer processing of medical images Contains over 60 pages of stunning, four-color images