**Author**: Dr. Martin Concoyle

**Publisher:** Trafford Publishing

**ISBN:** 9781490723716

**Category:** Education

**Page:** 794

**View:** 738

Skip to content
## Partitioning a Many-Dimensional Containment Space

This book is an introduction to the simple math patterns used to describe fundamental, stable, spectral-orbital physical systems (represented as discrete hyperbolic shapes). The containment set has many dimensions, and these dimensions possess macroscopic geometric properties (which are discrete hyperbolic shapes). Thus, it is a description that transcends the idea of materialism (i.e., it is higher-dimensional), and it can also be used to model a life-form as a unified, high-dimension, geometric construct, which generates its own energy and which has a natural structure for memory, where this construct is made in relation to the main property of the description being the spectral properties of both material systems and of the metric-spaces that contain the material systems, where material is simply a lower dimension metric-space and where both material components and metric-spaces are in resonance with the containing space.
## Describing the Dynamics of “Free” Material Components in Higher-Dimensions

This book is an introduction to the simple math patterns used to describe fundamental, stable, spectral-orbital physical systems (represented as discrete hyperbolic shapes). The containment set has many dimensions, and these dimensions possess macroscopic geometric properties (which are discrete hyperbolic shapes). Thus, it is a description that transcends the idea of materialism (i.e., it is higher-dimensional), and it can also be used to model a life-form as a unified, high-dimension, geometric construct, which generates its own energy and which has a natural structure for memory, where this construct is made in relation to the main property of the description being the spectral properties of both material systems and of the metric-spaces that contain the material systems, where material is simply a lower dimension metric-space and where both material components and metric-spaces are in resonance with the containing space.
## Perturbing Material-Components on Stable Shapes

This book is an introduction to the simple math patterns that can be used to describe fundamental, stable spectral-orbital physical systems (represented as discrete hyperbolic shapes, i.e., hyperbolic space-forms), the containment set has many dimensions, and these dimensions possess macroscopic geometric properties (where hyperbolic metric-space subspaces are modeled to be discrete hyperbolic shapes). Thus, it is a description that transcends the idea of materialism (i.e., it is higher-dimensional so that the higher dimensions are not small), and it is a math context can also be used to model a life-form as a unified, high-dimension, geometric construct that generates its own energy and which has a natural structure for memory where this construct is made in relation to the main property of the description being, in fact, the spectral properties of both (1) material systems and of (2) the metric-spaces, which contain the material systems where material is simply a lower dimension metric-space and where both material-components and metric-spaces are in resonance with (and define) the containing space.
## The Mathematical Structure of Stable Physical Systems

This book is an introduction to the simple math patterns used to describe fundamental, stable spectral-orbital physical systems (represented as discrete hyperbolic shapes), the containment set has many-dimensions, and these dimensions possess macroscopic geometric properties (which are also discrete hyperbolic shapes). Thus, it is a description which transcends the idea of materialism (ie it is higher-dimensional), and it can also be used to model a life-form as a unified, high-dimension, geometric construct, which generates its own energy, and which has a natural structure for memory, where this construct is made in relation to the main property of the description being, in fact, the spectral properties of both material systems and of the metric-spaces which contain the material systems, where material is simply a lower dimension metric-space, and where both material-components and metric-spaces are in resonance with the containing space. Partial differential equations are defined on the many metric-spaces of this description, but their main function is to act on either the, usually, unimportant free-material components (to most often cause non-linear dynamics) or to perturb the orbits of the, quite often condensed, material trapped by (or within) the stable orbits of a very stable hyperbolic metric-space shape.
## Partitioning a Many-Dimensional Containment Space

This book is an introduction to the simple math patterns used to describe fundamental, stable, spectral-orbital physical systems (represented as discrete hyperbolic shapes). The containment set has many dimensions, and these dimensions possess macroscopic geometric properties (which are discrete hyperbolic shapes). Thus, it is a description that transcends the idea of materialism (i.e., it is higher-dimensional), and it can also be used to model a life-form as a unified, high-dimension, geometric construct, which generates its own energy and which has a natural structure for memory, where this construct is made in relation to the main property of the description being the spectral properties of both material systems and of the metric-spaces that contain the material systems, where material is simply a lower dimension metric-space and where both material components and metric-spaces are in resonance with the containing space.
## Foundations of Multidimensional and Metric Data Structures

Publisher Description
## Proceedings of the Section on Statistical Graphics

## Proceedings of the ... International Conference on Information and Knowledge Management

## Proceedings of the 2001 ACM CIKM

## Proceedings, International Conference on Image Processing

## International Conference on Scientific and Statistical Database Management

## Algorithms and Data Structures for Structured and Unstructured Grid Generation