**Author**: Xin-She Yang

**Publisher:** Cambridge Int Science Publishing

**ISBN:** 9781904602521

**Category:** Computers

**Page:** 270

**View:** 460

Skip to content
## An Introduction to Computational Engineering with Matlab

This book strives to provide a concise introduction to computational engineering by introducing a wide range of numerical methods commonly used, such as finite difference methods, finite volume methods, finite element methods, and virtual bee algorithms. (Computer Books)
## Introduction to Finite Element Analysis for Engineers

Finite Element Analysis for Engineers introduces FEA as a technique for solving differential equations, and for application to problems in Civil, Mechanical, Aerospace and Biomedical Engineering and Engineering Science & Mechanics. Intended primarily for senior and first-year graduate students, the text is mathematically rigorous, but in line with students' math courses. Organized around classes of differential equations, the text includes MATLAB code for selected examples and problems. Both solid mechanics and thermal/fluid problems are considered. Based on the first author's class-tested notes, the text builds a solid understanding of FEA concepts and modern engineering applications.
## Insight Through Computing

This introduction to computer-based problem-solving using the MATLAB environment is highly recommended for students wishing to learn the concepts and develop the programming skills that are fundamental to computational science and engineering (CSE). Through a 'teaching by examples' approach, the authors pose strategically chosen problems to help first-time programmers learn these necessary concepts and skills. Each section formulates a problem and then introduces those new MATLAB language features that are necessary to solve it. This approach puts problem-solving and algorithmic thinking first and syntactical details second. Each solution is followed by a 'talking point' that concerns some related, larger issue associated with CSE. Collectively, the worked examples, talking points, and 300+ homework problems build intuition for the process of discretization and an appreciation for dimension, inexactitude, visualization, randomness, and complexity. This sets the stage for further coursework in CSE areas.
## Introduction to Computational Models with Python

Introduction to Computational Models with Python explains how to implement computational models using the flexible and easy-to-use Python programming language. The book uses the Python programming language interpreter and several packages from the huge Python Library that improve the performance of numerical computing, such as the Numpy and Scipy m
## Introduction to Computational Modeling Using C and Open-Source Tools

Introduction to Computational Modeling Using C and Open-Source Tools presents the fundamental principles of computational models from a computer science perspective. It explains how to implement these models using the C programming language. The software tools used in the book include the Gnu Scientific Library (GSL), which is a free software library of C functions, and the versatile, open-source GnuPlot for visualizing the data. All source files, shell scripts, and additional notes are located at science.kennesaw.edu/~jgarrido/comp_models The book first presents an overview of problem solving and the introductory concepts, principles, and development of computational models before covering the programming principles of the C programming language. The author then applies programming principles and basic numerical techniques, such as polynomial evaluation, regression, and other numerical methods, to implement computational models. He also discusses more advanced concepts needed for modeling dynamical systems and explains how to generate numerical solutions. The book concludes with the modeling of linear optimization problems. Emphasizing analytical skill development and problem solving, this book helps you understand how to reason about and conceptualize the problems, generate mathematical formulations, and computationally visualize and solve the problems. It provides you with the foundation to understand more advanced scientific computing, including parallel computing using MPI, grid computing, and other techniques in high-performance computing.
## An Introduction to Computational Science

This textbook provides an introduction to the growing interdisciplinary field of computational science. It combines a foundational development of numerical methods with a variety of illustrative applications spread across numerous areas of science and engineering. The intended audience is the undergraduate who has completed introductory coursework in mathematics and computer science. Students gain computational acuity by authoring their own numerical routines and by practicing with numerical methods as they solve computational models. This education encourages students to learn the importance of answering: How expensive is a calculation, how trustworthy is a calculation, and how might we model a problem to apply a desired numerical method? The text is written in two parts. Part I provides a succinct, one-term inauguration into the primary routines on which a further study of computational science rests. The material is organized so that the transition to computational science from coursework in calculus, differential equations, and linear algebra is natural. Beyond the mathematical and computational content of Part I, students gain proficiency with elemental programming constructs and visualization, which are presented in MATLAB syntax. The focus of Part II is modeling, wherein students build computational models, compute solutions, and report their findings. The models purposely intersect numerous areas of science and engineering to demonstrate the pervasive role played by computational science.
## Introduction to Elementary Computational Modeling

With an emphasis on problem solving, this book introduces the basic principles and fundamental concepts of computational modeling. It emphasizes reasoning and conceptualizing problems, the elementary mathematical modeling, and the implementation using computing concepts and principles. Examples are included that demonstrate the computation and visu
## Introduction to Integrative Engineering

This textbook is designed for an introductory course at undergraduate and graduate levels for bioengineering students. It provides a systematic way of examining bioengineering problems in a multidisciplinary computational approach. The book introduces basic concepts of multidiscipline-based computational modeling methods, provides detailed step-by-step techniques to build a model with consideration of underlying multiphysics, and discusses many important aspects of a modeling approach including results interpretation, validation, and assessment.
## Chemical Engineering Primer with Computer Applications

Taking a highly pragmatic approach to presenting the principles and applications of chemical engineering, this companion text for students and working professionals offers an easily accessible guide to solving problems using computers. The primer covers the core concepts of chemical engineering, from conservation laws all the way up to chemical kinetics, without heavy stress on theory and is designed to accompany traditional larger core texts. The book presents the basic principles and techniques of chemical engineering processes and helps readers identify typical problems and how to solve them. Focus is on the use of systematic algorithms that employ numerical methods to solve different chemical engineering problems by describing and transforming the information. Problems are assigned for each chapter, ranging from simple to difficult, allowing readers to gradually build their skills and tackle a broad range of problems. MATLAB and Excel® are used to solve many examples and the more than 70 real examples throughout the book include computer or hand solutions, or in many cases both. The book also includes a variety of case studies to illustrate the concepts and a downloadable file containing fully worked solutions to the book’s problems on the publisher’s website. Introduces the reader to chemical engineering computation without the distractions caused by the contents found in many texts. Provides the principles underlying all of the major processes a chemical engineer may encounter as well as offers insight into their analysis, which is essential for design calculations. Shows how to solve chemical engineering problems using computers that require numerical methods using standard algorithms, such as MATLAB® and Excel®. Contains selective solved examples of many problems within the chemical process industry to demonstrate how to solve them using the techniques presented in the text. Includes a variety of case studies to illustrate the concepts and a downloadable file containing fully worked solutions to problems on the publisher’s website. Offers non-chemical engineers who are expected to work with chemical engineers on projects, scale-ups and process evaluations a solid understanding of basic concepts of chemical engineering analysis, design, and calculations.
## Introduction to the Finite Element Method and Implementation with MATLAB

An introductory textbook for engineering students, connecting finite element theory with practical application and implementation.
## Scientific Computing in Electrical Engineering

This book is a collection of papers presented at the last Scientific Computing in Electrical Engineering (SCEE) Conference, held in Sicily, in 2004. The series of SCEE conferences aims at addressing mathematical problems which have a relevancy to industry. The areas covered at SCEE-2004 were: Electromagnetism, Circuit Simulation, Coupled Problems and General mathematical and computational methods.
## Chemical Engineering Computation with MATLAB®

Chemical Engineering Computation with MATLAB®, Second Edition continues to present basic to advanced levels of problem-solving techniques using MATLAB as the computation environment. The Second Edition provides even more examples and problems extracted from core chemical engineering subject areas and all code is updated to MATLAB version 2020. It also includes a new chapter on computational intelligence and: Offers exercises and extensive problem-solving instruction and solutions for various problems Features solutions developed using fundamental principles to construct mathematical models and an equation-oriented approach to generate numerical results Delivers a wealth of examples to demonstrate the implementation of various problem-solving approaches and methodologies for problem formulation, problem solving, analysis, and presentation, as well as visualization and documentation of results Includes an appendix offering an introduction to MATLAB for readers unfamiliar with the program, which will allow them to write their own MATLAB programs and follow the examples in the book Provides aid with advanced problems that are often encountered in graduate research and industrial operations, such as nonlinear regression, parameter estimation in differential systems, two-point boundary value problems and partial differential equations and optimization This essential textbook readies engineering students, researchers, and professionals to be proficient in the use of MATLAB to solve sophisticated real-world problems within the interdisciplinary field of chemical engineering. The text features a solutions manual, lecture slides, and MATLAB program files._