**Author**: Wang Hao

**Publisher:** Springer Science & Business Media

**ISBN:** 9789400923560

**Category:** Mathematics

**Page:** 373

**View:** 373

Skip to content
## Computation, Logic, Philosophy

~Et moi ... si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non· The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
## Computation, Logic, Philosophy

~Et moi, .... si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non· The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
## Logic, Meaning and Computation

This volume began as a remembrance of Alonzo Church while he was still with us and is now finally complete. It contains papers by many well-known scholars, most of whom have been directly influenced by Church's own work. Often the emphasis is on foundational issues in logic, mathematics, computation, and philosophy - as was the case with Church's contributions, now universally recognized as having been of profound fundamental significance in those areas. The volume will be of interest to logicians, computer scientists, philosophers, and linguists. The contributions concern classical first-order logic, higher-order logic, non-classical theories of implication, set theories with universal sets, the logical and semantical paradoxes, the lambda-calculus, especially as it is used in computation, philosophical issues about meaning and ontology in the abstract sciences and in natural language, and much else. The material will be accessible to specialists in these areas and to advanced graduate students in the respective fields.
## Logic, Language and Computation

This book is a collection of papers offering a broad account of many interesting topics in the study of Logic, Language and Information. In particular, the collection addresses two important themes: how to handle quantification in natural language, and how to isolate genuine `logics of information'. After the editor's introduction, which presents an overview of the interdisciplinary field, the collection begins with a group of fairly philosophical papers which address current issues in formal semantics from a logical perspective. It then moves on to papers which straddle the border between formal semantics and logic, and finishes with purely logical papers focusing on some non-classical logics. This book will be of interest to those working in logic, philosophy, linguistics, computer science and artificial intelligence.
## Philosophical Logic and Logical Philosophy

Vladimir Aleksandrovich Smirnov was born on March 2, 1931. He graduated from Moscow State University in 1954. From 1957 till 1961 he was a lecturer in philosophy and logic at the Tomsk University. Since 1961 his scientific activity continued in Moscow at the Institute of Philosophy of Academy of Sciences of the USSR. From 1970 and till the last days of his life V. A. Smirnov was lecturer and then Professor at the Chair of Logic at Moscow State University. V. A. Smirnov played an important role at the Institute of Philosophy of Russian Academy of Sciences being the Head of Department of Epistemology, Logic and Philosophy of Science and Technology, and the Head of Section of Logic. Last years he was the leader of the Centre of Logical Investigations of Russsian Academy of Sciences. In 1990-91 he founded a new non-goverment Institute of Logic, Cognitive Sciences and Development of Personality for performing research, teaching, editorial and organization activity in the field of humanities. At the Department of Philosophy of Moscow State University and at the Institute of Philosophy V. A. Smirnov and his close colleagues have founded a Russian logical school which brought up many talented researchers who work at several scientific centres in various countries.
## Games: Unifying Logic, Language, and Philosophy

OndrejMajer,Ahti-VeikkoPietarinen,andTeroTulenheimo 1 Games and logic in philosophy Recent years have witnessed a growing interest in the unifying methodo- gies over what have been perceived as pretty disparate logical ‘systems’, or else merely an assortment of formal and mathematical ‘approaches’ to phi- sophical inquiry. This development has largely been fueled by an increasing dissatisfaction to what has earlier been taken to be a straightforward outcome of ‘logical pluralism’ or ‘methodological diversity’. These phrases appear to re ect the everyday chaos of our academic pursuits rather than any genuine attempt to clarify the general principles underlying the miscellaneous ways in which logic appears to us. But the situation is changing. Unity among plurality is emerging in c- temporary studies in logical philosophy and neighbouring disciplines. This is a necessary follow-up to the intensive research into the intricacies of logical systems and methodologies performed over the recent years. The present book suggests one such peculiar but very unrestrained meth- ological perspective over the eld of logic and its applications in mathematics, language or computation: games. An allegory for opposition, cooperation and coordination, games are also concrete objects of formal study.
## Computation, Logic, Philosophy

~Et moi, .... si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non· The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
## Philosophy of Logic and Mathematics

This volume presents different conceptions of logic and mathematics and discuss their philosophical foundations and consequences. This concerns first of all topics of Wittgenstein's ideas on logic and mathematics; questions about the structural complexity of propositions; the more recent debate about Neo-Logicism and Neo-Fregeanism; the comparison and translatability of different logics; the foundations of mathematics: intuitionism, mathematical realism, and formalism. The contributing authors are Matthias Baaz, Francesco Berto, Jean-Yves Beziau, Elena Dragalina-Chernya, Günther Eder, Susan Edwards-McKie, Oliver Feldmann, Juliet Floyd, Norbert Gratzl, Richard Heinrich, Janusz Kaczmarek, Wolfgang Kienzler, Timm Lampert, Itala Maria Loffredo D'Ottaviano, Paolo Mancosu, Matthieu Marion, Felix Mühlhölzer, Charles Parsons, Edi Pavlovic, Christoph Pfisterer, Michael Potter, Richard Raatzsch, Esther Ramharter, Stefan Riegelnik, Gabriel Sandu, Georg Schiemer, Gerhard Schurz, Dana Scott, Stewart Shapiro, Karl Sigmund, William W. Tait, Mark van Atten, Maria van der Schaar, Vladimir Vasyukov, Jan von Plato, Jan Woleński and Richard Zach.
## Philosophy, Computing and Information Science

Over the last four decades computers and the internet have become an intrinsic part of all our lives, but this speed of development has left related philosophical enquiry behind. Featuring the work of computer scientists and philosophers, these essays provide an overview of an exciting new area of philosophy that is still taking shape.
## Computational Artifacts

The philosophy of computer science is concerned with issues that arise from reflection upon the nature and practice of the discipline of computer science. This book presents an approach to the subject that is centered upon the notion of computational artefact. It provides an analysis of the things of computer science as technical artefacts. Seeing them in this way enables the application of the analytical tools and concepts from the philosophy of technology to the technical artefacts of computer science. With this conceptual framework the author examines some of the central philosophical concerns of computer science including the foundations of semantics, the logical role of specification, the nature of correctness, computational ontology and abstraction, formal methods, computational epistemology and explanation, the methodology of computer science, and the nature of computation. The book will be of value to philosophers and computer scientists.
## Dictionary Of Modern American Philosophers

The Dictionary of Modern American Philosophers includes both academic and non-academic philosophers, and a large number of female and minority thinkers whose work has been neglected. It includes those intellectuals involved in the development of psychology, pedagogy, sociology, anthropology, education, theology, political science, and several other fields, before these disciplines came to be considered distinct from philosophy in the late nineteenth century. Each entry contains a short biography of the writer, an exposition and analysis of his or her doctrines and ideas, a bibliography of writings, and suggestions for further reading. While all the major post-Civil War philosophers are present, the most valuable feature of this dictionary is its coverage of a huge range of less well-known writers, including hundreds of presently obscure thinkers. In many cases, the Dictionary of Modern American Philosophers offers the first scholarly treatment of the life and work of certain writers. This book will be an indispensable reference work for scholars working on almost any aspect of modern American thought.
## Three Views of Logic

The first interdisciplinary textbook to introduce students to three critical areas in applied logic Demonstrating the different roles that logic plays in the disciplines of computer science, mathematics, and philosophy, this concise undergraduate textbook covers select topics from three different areas of logic: proof theory, computability theory, and nonclassical logic. The book balances accessibility, breadth, and rigor, and is designed so that its materials will fit into a single semester. Its distinctive presentation of traditional logic material will enhance readers' capabilities and mathematical maturity. The proof theory portion presents classical propositional logic and first-order logic using a computer-oriented (resolution) formal system. Linear resolution and its connection to the programming language Prolog are also treated. The computability component offers a machine model and mathematical model for computation, proves the equivalence of the two approaches, and includes famous decision problems unsolvable by an algorithm. The section on nonclassical logic discusses the shortcomings of classical logic in its treatment of implication and an alternate approach that improves upon it: Anderson and Belnap's relevance logic. Applications are included in each section. The material on a four-valued semantics for relevance logic is presented in textbook form for the first time. Aimed at upper-level undergraduates of moderate analytical background, Three Views of Logic will be useful in a variety of classroom settings. Gives an exceptionally broad view of logic Treats traditional logic in a modern format Presents relevance logic with applications Provides an ideal text for a variety of one-semester upper-level undergraduate courses