This volume describes an impressive array of the current photonic-related technologies being used in the investigation of biological systems. The topics include various types of microscopy (fluorescence correlation microscopy, two-photon microscopy), sensitive detection of biological molecules, nano-surgery techniques, fluorescence resonance energy transfer, nano-plasmonics, terahertz spectroscopy, and photosynthetic energy conversion. The emphasis is on the physical principles behind each technique, and on examining the advantages and limitations of each.The book begins with an overview by Paras Prasad, a leader in the field of biophotonics, of several important optical techniques currently used for studying biological systems. In the subsequent chapters these techniques are discussed in depth, providing the reader with a detailed understanding of the basic physical principles at work. An excellent treatment of terahertz spectroscopy demonstrates how photonics is being extended beyond the visible region. Recent results in the use of femtosecond lasers as a tool to porate cell walls demonstrate that the manipulation of light can be used as a tool for the study and the treatment of biological systems. The field of Bio-photonics is broad and still growing, so cannot be covered comprehensively in one volume. But here the reader will find an introduction to some of the major tools used for studying biological systems, and at the same time a detailed, first-principles treatment of the physics behind these tools.
This book introduces senior-level and postgraduate students to the principles and applications of biophotonics. It also serves as a valuable reference resource or as a short-course textbook for practicing physicians, clinicians, biomedical researchers, healthcare professionals, and biomedical engineers and technicians dealing with the design, development, and application of photonics components and instrumentation to biophotonics issues. The topics include the fundamentals of optics and photonics, the optical properties of biological tissues, light-tissue interactions, microscopy for visualizing tissue components, spectroscopy for optically analyzing the properties of tissue, and optical biomedical imaging. It also describes tools and techniques such as laser and LED optical sources, photodetectors, optical fibers, bioluminescent probes for labeling cells, optical-based biosensors, surface plasmon resonance, and lab-on-a-chip technologies. Among the applications are optical coherence tomography (OCT), optical imaging modalities, photodynamic therapy (PDT), photobiostimulation or low-level light therapy (LLLT), diverse microscopic and spectroscopic techniques, tissue characterization, laser tissue ablation, optical trapping, and optogenetics. Worked examples further explain the material and how it can be applied to practical designs, and the homework problems help test readers’ understanding of the text.
This book introduces the key concepts of nanoscale spectroscopy methods used in nanotechnologies in a manner that is easily digestible for a beginner in the field. It discusses future applications of nanotechnologies in technical industries. It also covers new developments and interdisciplinary research in engineering, science, and medicine. An overview of nanoscale spectroscopy for nanotechnologies, the book describes the technologies with an emphasis on how they work and on their key benefits. It also serves as a reference for veterans in the field.
This volume presents a considerable number of interrelated contributions dealing with the new scientific ability to shape and control matter and electromagnetic fields on a sub-wavelength scale. The topics range from the fundamental ones, such as photonic metamateriials, plasmonics and sub-wavelength resolution to the more applicative, such as detection of single molecules, tomography on a micro-chip, fluorescence spectroscopy of biological systems, coherent control of biomolecules, biosensing of single proteins, terahertz spectroscopy of nanoparticles, rare earth ion-doped nanoparticles, random lasing, and nanocoax array architecture. The various subjects bridge over the disciplines of physics, biology and chemistry, making this volume of interest to people working in these fields. The emphasis is on the principles behind each technique and on examining the full potential of each technique. The contributions that appear in this volume were presented at a NATO Advanced Study Institute that was held in Erice, Italy, 3-18 July, 2011. The pedagogical aspect of the Institute is reflected in the topics presented in this volume.
Micro and Nano Systems for Biophysical Studies of Cells and Small Organisms provides a comprehensive introduction to the state-of-the-art micro and nano systems that have recently been developed and applied to biophysical studies of cells and small organisms. These micro and nano systems span from microelectromechanical systems (MEMS) and microfluidic devices to robotic micro-nanomanipulation systems. These biophysical studies range from cell mechanics to the neural science of worms and Drosophila. This book will help readers understand the fundamentals surrounding the development of these tools and teach them the most recent advances in cellular and organismal biophysics enabled by these technologies. Comprehensive coverage of micro and nano-system technology and application to biophysical studies of cells and small organisms. Highlights the most recent advances in cellular and organismal biophysics enabled by micro and nano systems. Insightful outlook on future directions and trends in each chapter covering a sub-area of the book topic.
The book Quantum Dots - Theory and Applications collects some new research results in the area of fundamental excitations, decoherence, charge states, epitaxial techniques and photoluminescence experiments related to devices made with quantum dots. This book is divided in two sections. First section includes the fundamental theories on excitons, trions, phase decoherence, and charge states, and the second section includes several applications of quantum dots.
Biophotonics involves understanding how light interacts with biological matter, from molecules and cells, to tissues and even whole organisms. Light can be used to probe biomolecular events, such as gene expression and protein–protein interaction, with impressively high sensitivity and specificity. The spatial and temporal distribution of biochemical constituents can also be visualized with light and, thus, the corresponding physiological dynamics in living cells, tissues, and organisms in real time. Light can also be used to alter the properties and behaviors of biological matter, such as to damage cancerous cells by laser surgery or therapy, and manipulate the neuronal signaling in a brain network. Fueled by the innovations in photonic technologies in the past half century, biophotonics continues to play a ubiquitous role in revolutionizing basic life science studies as well as biomedical diagnostics and therapies. Advancements in biophotonics in the past few decades can be seen not only in biochemistry and cell/molecular biology, but also in numerous preclinical applications. Researchers around the world are searching for ways to bring biophotonic technologies into real clinical practices, particularly cellular and molecular optical imaging. Meanwhile, emerging technologies, such as laser nanosurgery and nanoplasmonics, have created new insights for understanding, monitoring, and even curing diseases on a molecular basis. This book presents the essential basics of optics and biophotonics to newcomers (senior undergraduates or postgraduate researchers) who are interested in this multidisciplinary research field. With stellar contributions from leading experts, the book highlights the major advancements in preclinical diagnostics using optical microscopy and spectroscopy, including multiphoton microscopy, super-resolution microscopy, and endomicroscopy. It also introduces a number of emerging techniques and toolsets for biophotonics applications, such as nanoplasmonics, microresonators for molecular detection, and subcellular optical nanosurgery.
Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.
Optofluidics is an emerging field that involves the use of fluids to modify optical properties and the use of optical devices to detect flowing media. Ultimately, its value is highly dependent on the successful integration of photonic integrated circuits with microfluidic or nanofluidic systems. Handbook of Optofluidics provides a snapshot of the s
The field of biophotonics is rapidly emerging in both academia and industry. It is the convergence of photonics and life sciences. Photonics - the science and technology of light generation, manipulation and measurement - has itself seen a remarkable expansion in the past 20 years, both in research and in commercialization, particularly in telecommunications. The life sciences have an increasing need for new technologies to which photonics can make significant contributions. As biology and medicine move into the post-genomics era, it is increasingly important to have highly sensitive tools for probing cells, tissues and whole organism structure and functions. Through photonic technologies optical fibers and sensitive imaging detectors, these measurements can often be done in a non- or minimally-invasive way, which is tremendously valuable for clinical and remote-sensing applications. In clinical medicine the ability to probe and image tissues is leading to a wide range of novel diagnostic methods; examples of these techniques are given in this book. Finally, the new field of nanotechnology is now penetrating into biophotonics. Examples include the use of nanoparticles such as metal nanospheres or rods and quantum dots for enhanced cell and tissue imaging and local light energy absorption. As will be evident, this volume is not intended as a comprehensive text on biophotonics. Rather, it presents ‘snapshots’ of some of the most exciting developments, from a perspective of photonic technologies, and life-sciences applications.