**Author**: Federico Poloni

**Publisher:** Springer Science & Business Media

**ISBN:** 9788876423840

**Category:** Mathematics

**Page:** 250

**View:** 108

Skip to content
## Algorithms for Quadratic Matrix and Vector Equations

This book is devoted to studying algorithms for the solution of a class of quadratic matrix and vector equations. These equations appear, in different forms, in several practical applications, especially in applied probability and control theory. The equations are first presented using a novel unifying approach; then, specific numerical methods are presented for the cases most relevant for applications, and new algorithms and theoretical results developed by the author are presented. The book focuses on “matrix multiplication-rich” iterations such as cyclic reduction and the structured doubling algorithm (SDA) and contains a variety of new research results which, as of today, are only available in articles or preprints.
## Algorithms for Quadratic Matrix and Vector Equations

This book is devoted to studying algorithms for the solution of a class of quadratic matrix and vector equations. These equations appear, in different forms, in several practical applications, especially in applied probability and control theory. The equations are first presented using a novel unifying approach; then, specific numerical methods are presented for the cases most relevant for applications, and new algorithms and theoretical results developed by the author are presented. The book focuses on “matrix multiplication-rich” iterations such as cyclic reduction and the structured doubling algorithm (SDA) and contains a variety of new research results which, as of today, are only available in articles or preprints.
## Structure-Preserving Doubling Algorithms for Nonlinear Matrix Equations

Nonlinear matrix equations arise frequently in applied science and engineering. This is the first book to provide a unified treatment of structure-preserving doubling algorithms that have been recently studied and proven effective for notoriously challenging problems, such as fluid queue theory and vibration analysis for high speed trains; present recent developments and results for the theory of doubling algorithms for nonlinear matrix equations associated with regular matrix pencils; and highlight the use of doubling algorithms in achieving robust solutions for notoriously challenging problems that other methods cannot.? Structure-Preserving Doubling Algorithms for Nonlinear Matrix Equations is intended for researchers and computational scientists, and graduate students may also find it of interest.
## Advances in Visual Computing

It is with great pleasure that we present the proceedings of the 6th Inter- tional, Symposium on Visual Computing (ISVC 2010), which was held in Las Vegas, Nevada. ISVC provides a common umbrella for the four main areas of visual computing including vision, graphics, visualization, and virtual reality. The goal is to provide a forum for researchers, scientists, engineers, and pr- titioners throughout the world to present their latest research ?ndings, ideas, developments, and applications in the broader area of visual computing. This year, the program consisted of 14 oral sessions, one poster session, 7 special tracks, and 6 keynote presentations. The response to the call for papers was very good; we received over 300 submissions for the main symposium from which we accepted 93 papers for oral presentation and 73 papers for poster p- sentation. Special track papers were solicited separately through the Organizing and Program Committees of each track. A total of 44 papers were accepted for oral presentation and 6 papers for poster presentation in the special tracks.
## System- and Data-Driven Methods and Algorithms

An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This first volume focuses on real-time control theory, data assimilation, real-time visualization, high-dimensional state spaces and interaction of different reduction techniques.
## Signal Processing for Active Control

Signal Processing for Active Control sets out the signal processing and automatic control techniques that are used in the analysis and implementation of active systems for the control of sound and vibration. After reviewing the performance limitations introduced by physical aspects of active control, Stephen Elliott presents the calculation of the optimal performance and the implementation of adaptive real time controllers for a wide variety of active control systems. Active sound and vibration control are technologically important problems with many applications. 'Active control' means controlling disturbance by superimposing a second disturbance on the original source of disturbance. Put simply, initial noise + other specially-generated noise or vibration = silence [or controlled noise]. This book presents a unified approach to techniques that are used in the analysis and implementation of different control systems. It includes practical examples at the end of each chapter to illustrate the use of various approaches. This book is intended for researchers, engineers, and students in the field of acoustics, active control, signal processing, and electrical engineering.
## The LLL Algorithm

The first book to offer a comprehensive view of the LLL algorithm, this text surveys computational aspects of Euclidean lattices and their main applications. It includes many detailed motivations, explanations and examples.
## KWIC Index for Numerical Algebra

## Algorithms for Linear-Quadratic Optimization

This textbook offers theoretical, algorithmic and computational guidelines for solving the most frequently encountered linear-quadratic optimization problems. It provides an overview of recent advances in control and systems theory, numerical line algebra, numerical optimization, scientific computations and software engineering.
## Theory of Linear and Integer Programming

Theory of Linear and Integer Programming Alexander Schrijver Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author's coverage of important recent developments in linear and integer programming. Applications to combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, mathematics and computer science. It will also be of interest to mathematical historians. Contents 1 Introduction and preliminaries; 2 Problems, algorithms, and complexity; 3 Linear algebra and complexity; 4 Theory of lattices and linear diophantine equations; 5 Algorithms for linear diophantine equations; 6 Diophantine approximation and basis reduction; 7 Fundamental concepts and results on polyhedra, linear inequalities, and linear programming; 8 The structure of polyhedra; 9 Polarity, and blocking and anti-blocking polyhedra; 10 Sizes and the theoretical complexity of linear inequalities and linear programming; 11 The simplex method; 12 Primal-dual, elimination, and relaxation methods; 13 Khachiyan's method for linear programming; 14 The ellipsoid method for polyhedra more generally; 15 Further polynomiality results in linear programming; 16 Introduction to integer linear programming; 17 Estimates in integer linear programming; 18 The complexity of integer linear programming; 19 Totally unimodular matrices: fundamental properties and examples; 20 Recognizing total unimodularity; 21 Further theory related to total unimodularity; 22 Integral polyhedra and total dual integrality; 23 Cutting planes; 24 Further methods in integer linear programming; Historical and further notes on integer linear programming; References; Notation index; Author index; Subject index
## Exploratory Analysis of Metallurgical Process Data with Neural Networks and Related Methods

This volume is concerned with the analysis and interpretation of multivariate measurements commonly found in the mineral and metallurgical industries, with the emphasis on the use of neural networks. The book is primarily aimed at the practicing metallurgist or process engineer, and a considerable part of it is of necessity devoted to the basic theory which is introduced as briefly as possible within the large scope of the field. Also, although the book focuses on neural networks, they cannot be divorced from their statistical framework and this is discussed in length. The book is therefore a blend of basic theory and some of the most recent advances in the practical application of neural networks.
## Control of Distributed Parameter Systems 1982

Control of Distributed Parameter Systems 1982 covers the proceeding of the Third International Federation of Automatic Control (IFAC) Symposium on Control of Distributed Parameter Systems. The book reviews papers that tackle issues concerning the control of distributed parameter systems, such as modeling, identification, estimation, stabilization, optimization, and energy system. The topics that the book tackles include notes on optimal and estimation result of nonlinear systems; approximation of the parameter identification problem in distributed parameters systems; and optimal control of a punctually located heat source. This text also encompasses the stabilization of nonlinear parabolic equations and the decoupling approach to the control of large spaceborne antenna systems. Stability of Hilbert space contraction semigroups and the tracking problem in the fractional representation approach are also discussed. This book will be of great interest to researchers and professionals whose work concerns automated control systems.